

XXIV. Erfahrungsaustausch - Mühlleithen Oberflächentechnologie mit Plasma- und Ionenstrahlprozessen 7.-9. März 2017

Karsten Harbauer, M. Kölbach, K. Ellmer

"Charakterisierung von gepulsten Laser-Ablations-Plasmen"

Warum gepulste Laserablation (PLD) für Materialbibliotheken?

Merkmale der PLD

- Target-Stöchiometrie ≈ Film-Stöchiometrie
- Hohe Reinheiten (UHV möglich)
- Epitaktische Schichten abscheidbar
- Es können sehr glatte Schichten gewachsen werden

- Niedrige Rate hohe Schichtqualität
- Materialdurchmusterung mit hohem Durchsatz möglich (kombinatorische PLD)

Prinzip Pulsed Laser Deposition

Entstehende Materialbibliotheken

PLD – Pulsed Laser Deposition – Laser, Diagnostik

Optical system

- Große Abbildungslänge für Verkleinerung bis hinunter zu 1:10
- Zusätzlicher Justierlaser $\lambda = 633 \text{ nm}$
- Zwei mögliche Winkel zur Targetablation (30 and 45 °)

Sample holder Shutter Target carouse Abb.6 Innerer Aufbau

Laser

- Excimerlaser LPXpro210 (KrF, $\lambda = 248$ nm, $\tau = 25$ ns, f < 100 Hz, E = 0.8 J),
- Coherent (Göttingen)

Generelle Merkmale

- UHV Beschichtungssystem für das kombinatorische Material-Screening von komplexen Oxiden und anderen Halbleitern und Katalysatoren für die photoelektrochemische Produktion von chemischen Brennstoffen
- Ionen/plasma-gestützter Beschichtungsprozess
- Polykristalline und epitaktische Schichtabscheidung
- In situ Ausheilung in verschiedenen Gasatmosphären
- Prevac Sonderanlagenbau Rogow (Polen)

UHV-Schleuse

- Fast pump down (~30min)
- In situ Vortemperung der Substrate möglich
- Magazin for PLD targets und substrates (5 pieces)

Prozesskammer

- Targetkarusell mit 6 Targets, mit 2" oder 1" Durchmesser
- Basisdruck< 10⁻⁸ Pa
- In situ Beschichtungskontrolle per Quartz Crystal Monitor (QCM)
- Messung der aktuellen Laserleistung
- Transferkammer f
 ür/nach EMIL
- Linear verschiebbares Maskensystem zur Beschichtung mit Schichtdickengradienten
- Variabler Target zu Substrate Abstand (40-100mm)

HZB: SOLARE BRENNSTOFFE

- PLD \rightarrow Kombinatorik

SETUP / MESSMETHODEN:

- Time of flight (ToF) Messmethode, Faraday probe
- Zeitaufgelöste, bildgebende Plume Anlayse mit iCCD

VERSUCHE

- ToF: Einflussgrößen wie Targetmaterialien, Gasdruck
- iCCD: Beispiele
- Vergleich der Methoden

ZUSAMMENFASSUNG + AUSBLICK

V_2O_5 , 4J/cm², ToF-Bias -40V...-5V, Vakuum

ToF-Flugzeiten

- Intensitätsmaximum abhängig von Bias
- − Intensiver UV Lichtpulse löst Elektronen aus ToF Elektrode \rightarrow [3,4]
- Flugzeitmessung zwischen Lichtpuls und Intensitätsmaximum
- →Lichtpuls nicht immer sichtbar

Ermittlung der Flugzeit mittels Triggerung durch Laser

 Laufzeit muss korrigiert werden (1,76 µs Nachweis durch Differenz Lichtpuls zu Lasertriggersignal)

[3] B. Toftmann et al. / Applied Surface Science 278 (2013) 273–277
[4] T.N. Hansen, J. Schou, J.G. Lunney, Europhys. Lett. 40, 441 (1997)

4,84

4,60

2,20 2,50

3,12

2,56

4J/cm ² , ToF-Bias -40V, Vakuum								
/laterial	'Spannung [V]'	Strom [A]	'Flugzeit [µs]'					
BiVO	5,40	0,11	5,40					

22,00

19,60

34,10

11,20

18,70

35,40

0,44

0,39

0,68

0,22

0,37

0,71

- ToF-Zeitverläufe für verschiedene Materialien zum Testen von Methode und Messaufbau
- Plumeformen variieren in Abhängigkeit von Material und Targetzustand (Verbrauchsgrad)

Λ

Bi

BiO

VO

V

Ag

ZnO

Umrechnung der ToF-Flugzeitsignale

• Darstellung der kinetischen Energie der Ionen der Masse m aus der PLD-Entladung

$$\Rightarrow E_{kin}[J,Ws] = \frac{m * v^2}{2} = \frac{m}{2} * \left(\frac{s}{t}\right)^2 = \frac{M[amu] * m_u[kg]}{2} * \left(\frac{s[m]}{t[s]}\right)^2$$

 Einsetzen der Zahlenwerte (m_u = 1,6605 *10⁻²⁷ kg); Abstand s=0.06 m; 1 J=6,242 *10 ¹⁸ eV) ergibt die Zahlenwertgleichung und ersetzt Zeitskala (Abzisse):

$$\Rightarrow E_{kin}[eV] = \frac{1,8657 * 10^{-11} [eV] * M [amu]}{(t - t_{start}) [s]^2}$$

• Die Ordinate Nach Thompson :[5]

$$\Rightarrow I(E) \left[\frac{As}{eV}\right] = 9.648 * 10^6 * (t - t_{start})^3 * \frac{U(t)}{(M * s^2)}$$

[5] M.W. Thompson, B.W. Farmery, P.A. Newson, I. A Mechanical Spectrometer for Analysing the Energy Distribution of Sputtered Atoms of Copper or Gold, Phil. Mag., 18 (1968) 361 376

4J/cm², ToF-Bias -40V, Vakuum

- Vergleichbare Ergebnisse bzgl. Ionenenergieverteilungen, wie in der Literatur
- Max. Ionenergien von 100 bis 400eV
- → höher als Magnetronsputtern

B. Toftmann et al. Applied Surface Science 278 (2013) 273–277

4J/cm², ToF-Bias -40V, Vakuum

- Darstellung der metallischen einzelatomaren Stoffe
- Plausible Messergebnisse
- Schultern erkennbar bei Ag, V

Material	amu	'Spannung [V]'	Strom [A]	'Flugzeit [µs]'	∆Hv[kJ/g]
Bi	209	22,00	0,44	4,84	0,50
V	51	11,20	0,22	2,50	8,87
Ag	108	18,70	0,37	3,12	2,32

PLD – ToF – Prozessdruck

4J/cm², ToF-Bias -40V

Der Hintergrundgasdruck von Ar wurde von Vakuum bis 5*10⁻² mbar variiert für verschiedene Materialien → Thermalisierung im Gas

<u>Links</u>: \rightarrow BiVO₄, Bi, B₂O₃, V₂O₅, V

- zeitliche Messsignalverläufe für ToF Messung
- Zunahme der Flugzeiten und Abnahme Messsignale durch Zunahme der Gasstreuung
 <u>Rechts:</u> →Bi, V
- Umrechnung in Ladungen als Funktion der Ionenenergien (hier nur Einzelelemente)
- Resultierende Abnahme der Ionenenergien gut ersichtlich

 Erster Aufbau mit Mastertrigger durch Pulsgenerator (Tests: f_{Trigger} =0,5Hz, t_{Puls}=100μs)
 Speicheroszilloskop erfasst Trigger impuls, Gate- und Exposureverhalten der iCCD-Kamera (später auch simultan die ToF Messung)

PLD – iCCD Kamera – Targetmaterialien

- ToF + iCCD \rightarrow V und Bi
- Synchronisierung fehlt noch und einheitlichen Kameraeinstellungen bzw. Farbdarstellung.
- Vanadium in beiden Fällen relativ früheres Auf- und Abklingen der Messsignale

- Direktvergleich: V₂O₅ und Bi₂O₃ zeigt deutlich unterschiedliche ToF-Flugzeiten
- Nutzbarer Effekt zur massenselektiven Untersuchung???

-

HZ

elmholtz

Zentrum Berlin

Targetablation: Verhindern der Strukturausbildung auf dem Target

- Scan nur über Radius → Ausbildung entgegen dem Lasereinfall (Abdampfen der Bi-Komponente)
- Techn. Gegenmaßnahme → Scannen über den gesamten Durchmesser
- Verwendbarkeit der ToF-Messung zur Kontrolle dieses Phänomens? → Erhalt der Stöchiometrie

Formation of cones:

BiVO₄-Target, $F= 1 \text{ J/cm}^2$, 5 - 500 shots on fixed target

Die ToF- Methode ist eine einfache und schnelle Methode zur Messung von Ionenenergien:

- Flugzeiten zwischen **3 und 6µs**
- Die Materialien BiVO₄, Bi, Bi₂O₃, V₂O₅, V, Ag, ZnO wurden bei Drücken von Vakuum bis 5*10⁻
 ²mbar verglichen
- Maximale Energien für die untersuchten Materialien liegen zwischen **100 und 400eV**
- Zusammenhang von Atommassen auf ToF-Flugzeiten
- Thermalisierung klar erkennbar bei der Druckvariation
- Inbetriebnahme und Untersuchungen des Plumes mit der ICCD Kamera
 - Erste plausible Bilder wurden für **BiVO**₄, **Bi**, **Bi**₂**O**₃, **V**₂**O**₅, **V** aufgenommen
 - Auswertung der ersten Aufnahmen noch nicht abgeschlossen
 - Handhabung der Kamera ist noch zu verbessern
 - Aufbau für eine genauere **Zeitmessung** in Vorbereitung
- Ausblick:
 - Elementspezifische Beobachtungen unter Verwendung von Interferenzfiltern

Karsten.Harbauer@helmholtz-berlin.de

Vielen Dank für Ihre Aufmerksamkeit

IV. Erfahrungsaustausch Mühlleithen